

Memory Technology	Typical Access Time	\$ per GiB in 2016
Static RAM	0.5 – 2.5 ns	\$500 - \$1000
Dynamic RAM	50 - 70 ns	\$10 - \$20
Flash memory	5000 – 50,000 ns	\$0.75 - \$1.00
Magnetic Disk	5,000,000 – 20,000,000 ns	\$0.05 - \$0.10

Year introduced	Chip size	\$ per GiB	Total access time to a new row/column	Average colum access time to existing row
1980	64 Kibibit	\$1,500,000	250 ns	150 ns
1983	256 Kibibit	\$500,000	185 ns	100 ns
1985	1 Mebibit	\$200,000	135 ns	40 ns
1989	4 Mebibit	\$50,000	110 ns	40 ns
1992	16 Mebibit	\$15,000	90 ns	30 ns
1996	64 Mebibit	\$10,000	60 ns	12 ns
1998	128 Mebibit	\$4,000	60 ns	10 ns
2000	256 Mebibit	\$1,000	55 ns	7 ns
2004	512 Mebibit	\$250	50 ns	5 ns
2007	1 Gibibit	\$50	45 ns	1.25 ns
2010	2 Gibibit	\$30	40 ns	1 ns
2012	4 Gibibit	\$1	35 ns	0.8 ns

Concluding Remarks

- Fast memories are small, large memories are slow:
 - We really want fast, large memories ⊗
 - Caching gives this illusion ©
- Principle of locality:
 - Programs use a small part of their memory space frequently.
- Memory hierarchy
 - L1 cache \leftrightarrow L2 cache $\leftrightarrow \dots \leftrightarrow$ DRAM memory \leftrightarrow disk